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Abstract. This paper addresses the challenge of decoupling “back-office” enter-
prise system functions in order to integrate them with the Industrial Internet-of-
Things (IIoT). IIoT is a widely anticipated strategy, combining IoT technologies
managing physical object movements, interactions and contexts, with business
contexts. However, enterprise systems, supporting these contexts, are notoriously
large and monolithic, and coordinate centralised business processes through soft-
ware components dedicated to managing business objects (BOs). Such objects
and their associated operations are difficult to manually decouple because of
the asynchronous and user-driven nature of the business processes and complex
BO dependencies, such as many-to-many and aggregation relationships. Here we
present a software remodularisation technique for enterprise systems, to support
the discovery of fine-grainedmicroservices, which can be extracted and embedded
to run on IIoT network nodes. It combines the semantic knowledge of enterprise
systems, i.e., the BO structure, with syntactic knowledge of the code, i.e., var-
ious dependencies at the level of classes and methods. Using extracted feature
sets based on both semantic and syntactic dependencies, K-Means clustering and
optimisation is then used to recommend microservices, i.e., redistributions of
BO operations through microservices from BO-centric components of enterprise
systems. The approach is validated using the Dolibarr open source ERP system,
in which we identify processes comprising both “edge” operations and request-
response calls to the Cloud-based enterprise system. Through experimentation
using Amazon GreenGrass deployments, simulating IIoT nodes, we show that the
recommended microservices demonstrate key non-functional characteristics, of
high execution efficiency, scalability and availability.
Keywords: microservice discovery, system remodularisation, cloud migration.

1 Introduction

The Industrial Internet of Things (IIoT) is widely expected to transform automation pro-
cesses of construction, manufacturing, utilities and other asset-intense sectors through
the real-time integration of physical environments and enterprise systems. Under the
IoT, physical object movements, interactions and contexts are tracked and controlled
through sensors and actuators, and data is transceived, via gateways, with Cloud sys-
tems providing intelligent analytics. The IIoT extends the scope of coordination to
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business contexts, where the processes, rules and data of enterprise systems are opened
up through IoT devices and contexts. Examples from construction [28] include: real-
time tracking of physical construction/assembly work against production schedules and
constraints (e.g., time allocation, stock use, wastage and budget impact); automatic
re-ordering of products, in-situ, subject to stock threshold levels and supplier contract
conditions; and automatic “wayfinding” of new stock to demand points on large sites.
Such examples require that software components of enterprise systems be integrated
with, and partially embedded to run on, IIoT nodes, to support low-latency, real-time
processing. In addition, IoT (and thus IIoT) networks have recently been endowed with
distributed computing tiers, through developments in Fog computing. As such, IIoT
nodes support processors, designated as the master, worker and edge nodes, each of
which can host and run parts of systems. This means, an enterprise system could have
its parts simultaneously deployed to run across the nexus of Cloud and IIoT nodes while
being connected to other distributed processes [21].

However, major uncertainty exists as to how microservices, compatible with IIoT,
can be created by decoupling and reusing parts of existing enterprise systems. This is
essential to preserve continuity with, and exploit the large investment in, enterprise sys-
tems that have been developed over many years. Such systems [5] manage thousands of
inter-dependent BOs, across a multitude of software packages and support asynchronous
and unstructured business processes [6–8]. For example, an order-to-cash process in SAP
ERP has multiple sales orders, with deliveries shared across many customers, shared
containers in transportation carriers, and multiple invoices and payments, processed
before or after delivery [9]. This poses challenges for identifying fine-grained, modular
tasks, to implement as IIoT-based microservices.

Microservices must exhibit high cohesion, low coupling, object encapsulation and
composability, as per basicmodularisation principles [10–12]. Applied to enterprise sys-
tems, they provide subsets of BO create, read, update and delete operations (correspond-
ing to decomposed business tasks). Microservices should also improve the scalability,
availability (resilience) and execution efficiency of the overall system [3]. Therefore, an
efficient re-distribution of BO operations is required from existing enterprise systems
components, reflecting these properties. Specifically, highly dependent operations of
a BO need to be combined into highly scalable, available and efficient microservices,
while the business processes, across existing enterprise systems and newly introduced
microservices, must still execute correctly.

Software remodularisation techniques have been proposed to scan different aspects
of systems, extract relevant structural and behavioural feature sets, and recommend new
modules using multi-objective optimisation. They have focussed on a system’s code
implementation, or syntactic properties, through two areas of coupling and cohesion
evaluation. The first is structural coupling and cohesion [10], involving structural rela-
tionships between the software classes in the same or in different components. These
include structural inheritance relationships between classes and structural interaction
relationships resulting when one class creates another class and uses an object reference
to invoke its methods. The structural relationships are automatically profiled through
Module Dependency Graphs (MDG), capturing classes as nodes and structural relation-
ships as edges [11], and are used to cluster classes using K-means, Hill-climbing, and
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other clustering algorithms. The second form is structural class similarity [12] based on
information retrieval (IR) techniques, for source code comparison of classes. Relevant
terms are extracted from the classes and used for latent semantic indexing and cosine
comparison to calculate similarity values between them.

Nonetheless, despitemany proposals for automated analysis of systems, studies show
that the success rate of software remodularisation remains low given the limited insights
available from purely syntactic structures [13].

More recently, semantic knowledge available through BOs of enterprise systems
has been exploited to improve the feasibility of applications’ architectural analysis [16].
Our previous research on MS discovery from enterprise systems for cloud deployments,
involving analysis of source code and systems logs, similarly exploits knowledge of BO
relationships [17, 18]. This was based on class-level feature set extractions for software
remodularisation analysis: structural inheritance relationships (class supertypes and
subtypes), structural interaction relationships (class level creations and invocations),
structural class similarity (intra-class level), and class semantic properties (class and BO
dependencies for BOs managed through classes). However, for the highly distributed
context of the IIoT, more fine-grained dependency analysis is critical and must be at the
level of individual methods (i.e., operations of classes).

Here we present a novel combination of syntactic and semantic remodularisation
analysis techniques. It applies both static (source code) and dynamic (event log) analysis
to extract crucial dependencies between classes of components, between classes and
BOs, and between BOs, and uses these insights to reason more reliably about fine-
grained, remodularisation and effective distribution at the level of class methods for
IIoT applications. It uses the following feature set extractions: method interactions
(intra- and inter-class), method similarity (intra-method level), and method semantic
properties (method and BO dependencies for BOs manipulated through SQL statements
in methods). Recommended clusters of operations for creating microservices are based
on subsets of BO operations.

We validated the technique using an open-source Enterprise Resource Planning sys-
tem, Dolibarr. Amazon Greengrass was used for testing the recommendedmicroservices
for the required non-functional properties of high scalability, availability and execution
efficiency. Greengrass nodes were used as IIoT nodes to host and run the test microser-
vices. The microservices then ran business processes involving BO operations and made
request-response calls to corresponding BO components in Dolibarr.

The remainder of the paper is structured as follows. Section 2 describes the related
works and background on system remodularisation techniques. Section 3 provides a
detailed description of our microservice discovery approach while Section 4 describes
its implementation and evaluation. Section 5 discusses the outcomes and possible future
work. The paper concludes with Section 6.

2 Background and Motivation

This section provides details of existing software remodularisation and reengineering
techniques while comparing their relative strengths and weaknesses. We then give an
overview of the architectural context of enterprise systems and their alignments with
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microservices for the IIoT. This context is assumed in the presentation of our software
remodularisation techniques in Section 3.

2.1 Related Work and Techniques Used for Software Remodularisation

Software remodularisation techniques have been introduced to analyse different facets
of systems, including software structure, behaviour, functional requirements, and non-
functional requirements. They focus on the behavioural and structural aspects of software
systems. The static analysis applies to code structure and the database schemas of
software systems while dynamic analysis involves the mining of systems logs for method
invocations occurring at run time. Both of these techniques can be used to provide
complementary details in the system remodularisation process.

Traditional static analysis techniques are used to remodularise software systems in
order to improve the coupling and cohesion of system modules. These are based on
structural interaction relationships between classes and object reference relationships
between classes resulting when one class creates another class and uses an object
reference to invoke its methods [10]. These relationships are profiled through Module
DependencyGraphs (MDG)while capturing classes as nodes and structural relationships
as edges [10,11]. They are used to cluster methods using K-means, Hill-climbing, NSGA
II and other clustering algorithms. Some other techniques were developed to evaluate
class-level relationships by considering their conceptual similarity using information
retrieval (IR) techniques [12].

However, given the code’s complexity and the semantic complexity of the structural
interaction relationships, such analyses are not enough. As such structural method sim-
ilarity (i.e., conceptual similarity) [12] was introduced to capture semantic similarities
between methods using information retrieval (IR) techniques. This technique compares
methods under the assumption that similarly named variables, object references, etc.,
infer conceptual similarity of methods. The extracted terms from methods are used
for latent semantic indexing and cosine comparison to calculate the similarity values
between them.

Despite many proposals for automated analysis of systems, studies show that the
success rate of software remodularisation remains low [13]. One of the major reasons
for this is the limited insights available from purely structural system analysis which
only focuses on the systems’ source code. Recent research shows that the semantic
insights available through BO relationships provide information regarding the systems’
behavioural aspects and these can be exploited to improve the feasibility of applications’
architectural analysis. Enterprise systems manage domain-specific information using
BOs, through their databases and business processes [7]. Evaluating such BO rela-
tionships and deriving useful insights from them to remodularise software systems falls
under the category of semantic structural relationships analysis. Such semantic relation-
ships are highlighted by Pẽrez-Castillo et al.’s experiments [15], in which the transitive
closure of strong BO dependencies derived from databases was used to recommend
software function hierarchies, and by Lu et al.’s experiments [16], in which SAP ERP
logs were used to demonstrate process discovery based on BOs. Also, our own previous
research on microservice discovery based on BO relationship evaluation [17,18] showed
the impact of considering semantic structural relationships in software remodularisation.
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Fig. 1. Overview of an enterprise system extended with extracted microservices.

However, to date, techniques related to semantic structural relationships have not
been integrated with static syntactic techniques at the method level. As a result, cur-
rently proposed design recommendation tools provide insufficient insights for software
remodularisation targeting IIoT applications.

2.2 Architecture for Enterprise System to Microservice Remodularisation

In this section, we define the importance of considering the different factors detailed in
Section 2.1 with respect to the architectural configuration of an enterprise system and
related microservices in an IIoT network, underpinned by “fog” nodes in which much
of the computation is done on “edge” devices. In order to provide a clear understanding
of the structural complexity and behavioural implications of combining an enterprise
system with an IIoT network, consider Figure 1, in which the current and future process
states are depicted. Current-state processes, typically triggered by user actions, involve
interactions through the methods of the enterprise system only. Future-state processes
cover both a central enterprise system and its MSs deployed in the IIoT Network.

Figure 1 shows a central administration process for a construction/manufacturing
scenario involving Production Management lists for Users (workers) which refer to
Products being assembled and Reports for auditing and risk detection. It also includes
Orders for faulty parts listed in Order Lines. In the future-state processes, some oper-
ations of the Production Management, Product Management and Report Management
components are decoupled as microservices and embedded in a physical environment
so that real-time and low-latency scheduling, checking, reporting and risk detection is
enabled. This use case is inspired by Oswald et al.’s business analysis [19].

The internal structure of the enterprise system consists of a set of self-contained
modules related to advance manufacturing drawn from different subsystems and is
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deployed on a “backend”. Each module is a combination of software classes that con-
tain methods that manage one or more BOs through create, read, update and delete
(CRUD) operations. These methods guide the system’s execution through method calls
between different classes in the same module or in different modules. For example, oper-
ation ‘OP1 [Production]’ references an external method ‘OP1 [Product]’ of the ‘Product
Management Module’ through an object reference call and ‘OP1 [Report]’ references an
internal method in the ‘Report Management Module’ which calls ‘OPm []’ in the same
class. Execution of these methods generates system logs and the security of the modules
and the system is governed through the security policies defined.

The microservices each support a subset of methods through classes that are specif-
ically related to individual BOs, as depicted in Figure 1. This results in high cohesion
within microservices and low coupling between the microservices. The microservices
communicate with each other and with the enterprise system through API calls. Execu-
tion of methods across the enterprise system and microservices is coordinated through
business processes, which means that invocations of methods in the enterprise system
will trigger methods on microservices by passing parameters required by the microser-
vices’ APIs. Data consistency of different microservice databases and the enterprise
system’s database is achieved via regular synchronisation.

Based on this understanding of the structure of the enterprise system and its mi-
croservices, it is apparent whywemust consider both semantic and syntactic information
for our microservice discovery process. To capture the method call relationships in the
enterprise system, we need structural interaction relationship analysis methods. This
analysis helps to group methods that are highly coupled into one group, such as the
grouping of ‘OP1 [Report]’ and ‘OPm []’ operations in the ‘Report Management Mod-
ule’. However, those relationships alone would not help to capture method similarities
at the code level. To capture such similarities, we have to use the structural method
similarity analysis techniques based on information retrieval (IR) techniques.

With structural method relationships and structural method similaritywe can cluster
methods into different modules. However, suchmodules might not align with the domain
relationships until we consider the BO relationships of different methods. It is important
to consider semantic structural relationships in the microservice derivation process,
since each microservice should contain methods that are related to each other and
should perform method invocations on the same BO. Previous research has extensively
used structural relationships in system remodularisation [10–12]. However, when it
comes to microservice derivation, combining semantic structural relationships with
syntactic structural relationships will allow deriving better method clusters for IIoT
deployed microservices.

3 Clustering Recommendation for Microservice Discovery

In order to derive IIoT-based microservices while considering the factors defined in
Section 2, we developed a five-step approach, as illustrated in Figure 2. In Step 1, we
derive the BOs by evaluating the SQL queries in the source code structure and also the
database schemas and data as described by Nooĳen et al. [20]. In Step 2, we identify the
semantic structural relationships by deriving the method and BO relationships. Steps 3
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Fig. 2. Overview of our microservice discovery approach.

and 4 are used to discover the syntactic details related to the enterprise system. In Step 3,
we measure the structural method similarities between methods in the same class and in
different classes, and in Step 4we capture the structural interaction relationships between
different methods. The details obtained through Steps 2 to 4 are used in Step 5 where a
K-means clustering algorithm is used to evaluate and recommend effective combinations
of methods for IIoT-based microservice deployment. These steps are described further
in Section 3.1.

3.1 Clustering Discovery Algorithms
As depicted in Figure 2, we supply a K-means algorithm with three main feature sets
to derive a satisfactory clustering of system methods and suggest microservice designs.
To derive these sets, we use Algorithm 1, which is composed of eight steps. We use the
following formalisation here onwards to describe the algorithm.

Let I, O, OP, B, T and A be a universe of input types, output types, operations,
BOs, database tables and attributes respectively. We characterise a database table C ∈ T
by a collection of attributes, i.e., C ⊆ A, while a business object 1 ∈ B is defined as a
collection of database tables, i.e., 1 ⊆ T. An operation/method op, either of an enterprise
system or microservice system, is given as a triple (�, $, )), where � ∈ I∗ is a sequence
of input types the operation expects for input, $ ∈ O∗ is a sequence of output types
the operation produces as output, and ) ⊆ T is a set of database tables the operation
accesses, i.e., either reads or augments.3 Each class cls ∈ CLS is defined as a collection
of operations/methods, i.e., cls ⊆ OP.

The BOS function in Algorithm 1 is used to derive BOs � from enterprise systems
as detailed by Nooĳen et al. [20] (line 1). In the second step of the algorithm, function
CLSEXT is used to extract code related to each class cls ∈ CLS from the system code
by searching through its folder and package structure (line 2). The extracted classes
CLS are provided to the next step of the algorithm which uses the MTDEXT function to
extracts the methods related to these classes (line 3). This step extracts the methods and
the comments related to each method into separate text files and saves them for further
processing.

In the fourth step, we rely on the information required for structural method sim-
ilarity analysis using information retrieval (IR) techniques. As such, in the third step,

3 �∗ denotes application of the Kleene star operation to set �.
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Algorithm 1: Discovery of BO and method relationships
Input: System code SC of an enterprise system B, stop words related to methods STW

and system database DB
Output: Feature set data borel, cosine, subtyperel, referencerel and BOs �

1 � = {11 , . . . , 1=} := BOS(SC, DB)
2 CLS = {cls1 , . . . , cls<} := CLSEXT (SC)
3 MTD = {mtd1 , . . . ,mtd<} := MTDEXT (CLS)
4 UW = 〈uw1 , . . . , uwI〉 := UWORDEXT (MTD, STW)
5 for each mtd8 ∈ MTD do
6 for each 1: ∈ � do
7 mtdborel[i] [k] := BCOUNT (mtdi, bk);
8 end
9 for each uwB ∈ UW do

10 mtduwcount[i] [s] := WCOUNT (uws,mtdi);
11 end
12 end
13 for each mtd8 , mtd: ∈ MTD do
14 mtdcosine[i] [k] := MTDCOSINECAL(mtduwcount[i],mtduwcount[k]);
15 end
16 mtdrel := MTDRELCAL(MTD);
17 return CLS, MTD, mtdborel, mtdcosine, mtdrel, �

Fig. 3. Example word matrix extracted from program code (<C3DF2>D=C in Algorithm 1).

the algorithm identifies unique words UW related to all the methods using function
UWORDEXT (line 3), which requires all the source codes of the methods MTD, and
stop words STW, which should be filtered out from the methods. In general, IR tech-
niques analyse documents and filter out the contents that do not provide any valuable
information for document analysis, referred to as ‘stop words’. In our case, the stopwords
(STW) contain syntax related to the methods, standard technical terms used in coding
in that particular programming language (in our case PHP) and common English words
that would not provide any specific insight into a method’s purpose. These are specified
by the user based on the system’s programming language. Function UWORDEXT first
filters out the stop words STW from the methods MTD and then identifies the collec-
tion of unique words UW in methods MTD as a ‘bag of words’ [22]. This produces a
collection of non-repeating words as depicted by the column names in the example in
Figure 3.
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(a) mtdborel (b) mtdcosine (c) mtdrel

1

5

3

Fig. 4. Examples of matrices derived from code using Algorithm 1 (<C31>A4;, <C32>B8=4 and
<C3A4;).

In the fifth step, the algorithm evaluates each method mtd ∈ MTD extracted in the
third step and identifies the BOs which are related to each method. For this purpose,
the algorithm uses function BCOUNT which processes the SQL statements, comments
and method names and counts the number of times tables relating to BOs appear in the
methods. This information is stored in matrix mtdborel (lines 5–8). In this matrix, each
row represents a method, and each column represents the number of relationships that
method has with the corresponding BO, as depicted in Figure 4(a). This helps capture the
semantic structural relationships (i.e., BO relationships), which provides an idea about
the “boundedness” of methods to BOs. For example, Method 1 (‘Mtd 1’) is related to
‘BO1’ and ‘BO2’ in Figure 4(a).

In the sixth step, the algorithm derives another matrix mtduwcount, which keeps
a count of unique words related to each method using function WCOUNT (lines 9–
11). Figure 3 provides an overview idea of a possible matrix that can be generated for
mtduwcount. Again, in thismatrix, rows correspond tomethods, and columns correspond
to unique words identified in step four of the algorithm that appear in the corresponding
methods. The values in mtduwcount are then used in the seventh step to calculate the
cosine similarity between the methods using function COSINECAL (lines 12–14).

Next, the algorithm’s eighth step extracts the structural interaction relationships (i.e.,
method call relationships)using function MTDRELCAL (line 16). In this function, the
code is first evaluated using the Mondrian code analysis tool4, which generates graphs
based on method call relationships as depicted in Figure 5. In Figure 5 the red circle
shows the class, the grey squares show the methods in different classes and the arrow
between them shows themethod call relationships. Then the graphs are analysed to create
matrix mtdrel which summarises the method call relationships for further processing
(see the example in Figure 4(c)).

The feature set data in variablesmtdborel,mtdcosine,mtdrel and the BOs � obtained
from Algorithm 1 are provided as input to the K-Means algorithm to cluster the methods
related to BOs based on their syntactic and semantic relationships.We followed a similar
approach in our previous work [14], in which we adapted class-level relationships for
microservice cluster discovery. However, here we have moved to the next level of system
analysis by evaluating method level relationships. As such, in Algorithm 1, each dataset
captures different aspects of relationships between the methods in the given system
(Figure 4). Finally, as per our earlier work [14], we configured the K-Means algorithm
to produce a set of clusters that group the methods of the analysed enterprise system as
recommendations for constructing microservices.

4 https://github.com/Trismegiste/Mondrian
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Fig. 5. Mondrian method call graphs

4 Implementation and Validation

To demonstrate our approach’s applicability we developed a prototype microservice
recommendation system5 capable of discovering coherent method clusters related to
different BOs, which lead to different microservice configurations. The system was
tested using the Dolibarr open-source enterprise management system. Dolibarr consists
of about 11,000 files and out of them around 1850 classes are related to its core
functionality. Dolibarr’s database uses MySQL and consists of 250 tables containing
around 660 attributes.

Using our implementation, we performed the static analysis of Dolibarr’s source
code to identify the BOs it manages. As a result, 39 BOs were identified, e.g., Product,
Order, Shipment, etc. Then, we performed the static analysis of the system to derive
matrices, similar to those depicted in Figure 4, summarising the BO relationships,
method similarity relationships and, method call relationships. All the results obtained
were processed by our prototype software to identify method clusters and recommend
microservices. The prototype identified 39method clusters related to theBOs inDolibarr,
such that each cluster groups methods for developing a microservice that relates to a
single BO.

4.1 Experimental Setup
In order to evaluate the effectiveness of the microservices suggested by our prototype for
potential IIoT deployment, we compared the performance of the enterprise system with

5 https://github.com/AnuruddhaDeAlwis/KMeans.git
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Fig. 6. System implementation using Amazon Web Services and Raspberry Pis.

and without microservice extensions. Each enterprise system was hosted in an Amazon
Web Services cloud by creating two EC2 instances having two virtual CPUs and a total
memory of 2GB, as depicted on the left side of Figure 6. Amazon Greengrass nodes
were then used to simulate IIoT nodes running on Raspberry Pis as shown on the right.
The systems’ data were stored in a MySQL relational database instance which has one
virtual CPU and total storage of 20GB.

These systems were tested against 200 and 400 executions generated by four ma-
chines simultaneously, simulating customer requests. We recorded the total execution
time, average CPU consumption, and average network bandwidth consumption for these
executions (see the first two rows in Table 1). During the executions we tested the func-
tionality related to operation ‘order product’. The simulations were conducted using
Selenuim6 scripts which ran the system in a way similar to a real user.

Next, we introduced the ‘purchase order’ microservice from the Dolibarr system. As
depicted on the right side of Figure 6, we hosted eachmicroservice on anAmazonGreen-
grass node run on a Raspberry Pi 4, each containing its own local MySQL database. The
tests were also performed on the original enterprise system, again simulating ordering a
product. Since the microservices were refactored parts of the enterprise systems in these
tests, the enterprise systems used API calls to pass the data to the microservices and the
microservices processed and sent back the results. Again, we recorded the total execu-
tion time, average CPU consumption, and average network bandwidth consumption for
the entire system, i.e., enterprise system and microservice as a whole (see rows 3 and 4
in Table 1).

The scalability, availability and execution efficiency of the systems were calculated
based on themeasured results. The obtained results are summarised in Table 2 asES with
MSs (1) (second row in Table 2). Scalability was calculated according to the resource
usage over time, as described by Tsai et al. [23]. To determine availability, first we
calculated the packet loss for one minute when the system is down and then obtained
the difference between the total up time and total time (i.e., up time + down time), as

6 https://www.seleniumhq.org/
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Table 1. Legacy vs microservice system results for Dolibarr.

System Type No of
Requests

Ex. Time
(ms)

Avg CPU
EC2

Avg CPU
DB

ES only 200 822000 9.54 2.37
ES only 400 1740000 8.81 2.13
ES with MSs (as recommended) 200 816000 5.05 1.67
ES with MSs (as recommended) 400 1728000 5.23 1.55
ES with MSs (when ‘disrupted’) 200 819000 8.88 1.88
ES with MSs (when ‘disrupted’) 400 1734000 8.05 2.00

Table 2. Legacy vs microservice system EC2 characteristics comparison for Dolibarr.

System Type Scalability
[CPU]

Scalability
[DB CPU]

Availability
[200]

Availability
[400]

Efficiency
[200]

Efficiency
[400]

ES only 3.458 3.365 99.27 99.31 1.000 1.000
ES with MSs (1) 3.398 3.045 99.27 99.31 1.007 1.007
ES with MSs (2) 3.427 4.031 99.27 99.31 1.003 1.003

described by Bauer et al. [24]. Dividing the total time taken by the legacy system to
process all requests by the total time taken by the corresponding enterprise systemwhich
has microservices led to the calculation of efficiency gain.

Next, we tested the quality of our system’s microservice recommendations by dis-
rupting its suggestions and developed a ‘purchase order’ microservice, while introducing
operations related to the ‘user’ microservice, also running on an Amazon Greengrass
deployment. Again, with this change, we set up the experiment as described earlier
and measured the results (rows 5 and 6 in Table 1). Then we calculated the scalability,
availability and execution efficiencies of the systems, summarised in Table 2 as ES with
MSs (2) (third row in Table 2).

Based on these obtained experimental results we evaluated the effectiveness of our
approach in two aspects. Firstly, we evaluated the performance differences between
the microservice system and the original enterprise system. Secondly, we evaluated
the performance differences between the microservices suggested by our prototype and
other microservice designs. These comparisons are detailed below.

Recommended microservices vs original enterprise system.As per Tsai et al.’s met-
ric [23], the lower the measured number, the better the scalability. Thus, it is evident that
the microservice systems derived based on our clustering algorithm managed to achieve
0.7% improved system execution efficiency and 1.74% scalability improvement (con-
sidering CPU scalability), see Table 1. As such, our recommendation system discovers
microservices that can achieve improved cloud capabilities such as high scalability, high
availability and high execution efficiency. Notably, the integrated ES with MSs system
achieved 59% (5.23/8.81) and 72% (1.55/2.13) CPU utilisation at EC2 instances and
DB as compared to the original ES.

Recommended microservices vs other microservices. Microservices developed
based on the suggestions provided by our recommendation system for Dolibarr managed
to achieve: (i) 1.74% calability improvement in EC2 instance CPU utilisation; (ii) 9.51%
scalability improvement in database instance CPU utilisation; and (iii) a 0.7% improve-
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ment in execution efficiency. However, the “disrupted” microservices that violated the
recommendations reduced (i) EC2 instance CPU utilisation to 0.89%; (ii) database in-
stance CPU utilisation to (-)19.79%; and (iii) execution efficiency to 0.3%. As such, it
is evident that the microservices developed by following the recommendations of our
system provided better cloud characteristics than the microservices developed against
these recommendations.

4.2 Limitations

Although this paper presents an algorithm that resolves some of the challenges in
discovering IIoT microserviceable components from enterprise systems, there remain
several limitations that should be addressed in future research.

Limitation of BO derivation: To derive the BOs related to the given enterprise
systems, we used Nooĳen et al.’s method [20]. However, as Lu et al. explain [16], such
methods cannot always derive BOs accurately without some domain knowledge from
from the system’s developers. We tried to avoid errors by manually evaluating the results
obtained for the BOs by referring to the system’s manuals and documentation. Still, such
an approach remains complex and error prone.

Limitation of structural method similarity analysis: The structural method similar-
ity analysis obtained a ‘bag of words’ term frequency and, finally, calculated the cosine
similarity between the documents. The first limitation of this method is the potential
filtering out of valuable information in the data preprocessing stage. We mitigated this
by manually evaluating the stop words used in the text preprocessing step. In addition,
the cosine values might not provide an accurate idea about structural method similarity
since it may also depend on the terms used in the definitions of the method names and
descriptions given in the comments. We mitigated this to a certain extent by evaluating
the code structure of the software systems and verifying that the method names and
comments provide valuable insights into the logic behind the methods that implement
the system, but again it is easy to make mistakes during such a manual process.

5 Discussion

This paper we showed how to identify the components in enterprise systems that can
be developed as IIoT deployable microservices. However, through the introduction of
microservices, new behaviours can arise in relation to current state enterprise systems,
given increased flexibility of execution, resulting from asynchronous and branching
actions and new extension points introduced by microservice architectures. In order
to evaluate the behavioural changes caused by the introduction of IIoT components to
enterprise systems, testing should be conducted using methods such as conformance
checking.

Similarly, distributing enterprise systems in “fog” networks, where significant parts
of the computation occur on edge devices, opens up significant security vulnerabilities.
Under a central system, the users’ and systems’ interactions are subject to local access
control, constraining data access via permissions and security modes. However, the
distributed architecture of IIoT and fog computing poses new threats to authentication
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and trust, secure communications, and end-user privacy [25]. In particular, a fog network
makes it difficult to authenticate the identity of nodes as they enter and leave the
network [26], is vulnerable to data breaches caused by malicious or malfunctioning
nodes, risks end-user privacy due to the large amount of user-specific data generated by
nodes, and inhibits anomaly detection due to the difficulty of monitoring large numbers
of nodes [27]. Developing new security technologies and verification methods for IIoT
applications would be another interesting future research area.

6 Conclusion

Here we presented a novel technique for automated analysis and remodularisation of en-
terprise systems as IIoT deployablemicroservices by combining techniques that consider
semantic knowledge and syntactic knowledge about the system’s code. A prototype rec-
ommendation system was developed and validated by implementing the microservices
recommended by the prototype for Dolibarr which is an open-source ERP system. The
experiment showed that our approach could derive method clusters that produced IIoT
deployable microservices with desired Cloud characteristics, such as high scalability,
high availability, and processing efficiency.
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